Неприятной ситуации с затоплением своего жилища, а также квартир, расположенных на нижних этажах, можно избежать, установив систему, перекрывающую входные вентили при появлении влаги на полу помещения. Такие устройства, разработанные специально для бытового применения, давно существуют на рынке под обобщающим названием «системы защиты от протечек». Повсеместному распространению этих приборов препятствует их дороговизна, связанная с наличием импортных компонентов и узлов. Защита от протечек, собранная своими руками , лишена этого недостатка и может быть изготовлена из деталей, которые можно найти в любом гараже.

Рассмотрим два типа устройств: механическое и электронное. Первое приспособление очень простое в изготовлении. Второе потребует некоторых знаний электроники и навыков работы с паяльником. Оба устройства неоднократно повторялись домашними умельцами и заслужили славу недорогих и эффективных систем для защиты от протечек воды.

Устройство защиты от протечек воды изобретателя Рудика А.В.

Самодельный механизм, который придумал изобретатель Александр Владимирович Рудик, чем-то напоминает мышеловку. В его конструкцию входит хитро изготовленный металлический корпус, пружина, бумажная лента и тросик, присоединенный к шаровому крану, который закрывает подачу воды. Работает этот механизм следующим образом: при размокании бумажной ленты вследствие попадания на неё влаги, она рвётся и высвобождает натянутую пружину. Сжимаясь, пружина натягивает тросик, который, в свою очередь, перекрывает вентиль.

Механизм Александра Рудика немного похож на мышеловку

Преимуществом такого устройства является то, что вмешательства в водопроводную систему не требуется, так как используются уже смонтированные в ней шаровые краны. К тому же при необходимости ничто не препятствует ручному перекрытию вентилей.

Установка тросика

Устройство защиты от протечек может быть установлено в любом месте: на кухне под мойкой, в ванной или в туалете. Его конструкция позволяет применять два тросика, для одновременного прекращения подачи холодной и горячей воды. При этом механизм не требует никакого обслуживания.

Изготовление механизма защиты от протечек

Для изготовления устройства защиты от протечек, понадобятся:

  • Слесарные тиски;
  • Ножовка по металлу;
  • Дрель;
  • Молоток
  • Пассатижи;
  • Электроточило.

Из материалов следует запастись листовым металлом (лучше оцинкованная или нержавеющая сталь). Также понадобятся: тросик, подходящий деревянный брусок размерами 360х50х30мм, пружина, бумага, шурупы, кнопки канцелярские.

Схема раскроя металлического листа

Основанием механизма служит брусок, край которого срезан по короткой стороне под углом 93°. На нём смонтированы элементы 3, 4, 5, а также пружина и тросик.

В качестве чувствительного датчика используется бумажная полоса, которая крепится к деревянному основанию кнопками.

В качестве сигнализатора используется обычная бумага

Чтобы изготовить элемент №3 можно воспользоваться прочным бруском размерами 150х20х50мм. Вырезанную из листа заготовку изгибают вокруг этого бруска, делают прорези для установки тросика, а затем снимают с деревянного приспособления.

Третий и четвертый элементы конструкции лучше изготовить из нержавеющей стали, так как этот материал имеет более скользкую поверхность. Места, по которым детали необходимо сгибать, показаны на чертеже красными линиями.

В прорези деталей 4a и 4b установите тросик

В прорези деталей 4a и 4b устанавливается тросик. Затем детали 4, 4a, 4b и пружину необходимо соединить снизу винтом.

Регулировка механизма

Изготавливать и регулировать устройство удобно при помощи простого приспособления, имитирующего часть водопровода. Для этого понадобится 20-мм труба с резьбовой частью, на которую нужно установить шаровый кран.

Кронштейн для крепления механизма к трубопроводу

При помощи такого приспособления можно проверить и настроить работу механизма прямо в мастерской. Также труба понадобится при сверлении отверстий в элементах 2 и 2a. Для этого между ними устанавливают трубу и зажимают детали в тисках. При этом следят за тем, чтобы рукоятка крана (элемент 1 и 1a) была в закрытом состоянии, а пазы для троса и элемент 2 совмещают. После этого приступают к сверлению сквозных отверстий элементов 2 и 2a.

Рукоятка крана позволит настроить работу механизма прямо в мастерской

Элемент 5 имеет отверстие под палец (для установки пружины) и отверстие для зацепа. Прокручивая по виткам, деталью 5 можно отрегулировать жёсткость пружины.

Механизм в «заряженном» состоянии

Сила натяжения пружины в рабочем положении должна быть не менее 10кг. Основное условие: усилие, приходящееся на бумажную ленту, должно составлять 1-1,5кг. Чтобы измерить его величину, можно воспользоваться бытовыми пружинными весами («кантером»). При необходимости, величину усилия можно изменить, уменьшив или увеличив угол на коротком торце бруска. Такой же угол должен быть и у элементов 3,4 на участке касания.

Кронштейн пружины с отверстием под палец

Хорошая пружина получается при отрезании необходимого куска от дверной пружины, которые продаются в любом хозмаге. Тросик можно использовать велосипедный, укоротив его до нужной длины.

Для проверки работоспособности собранной системы бумажную ленту смачивают водой. При размокании она должна разорваться и освободить пружинный механизм.

Требования к установке механической системы защиты от протечек

Если механизм сработал, последующую установку бумажной ленты следует производить только после полного удаления влаги с поверхности устройства.

Трос должен иметь длину не больше 2м, при этом следует избегать его многочисленных изгибов (допускается не более одного изгиба под прямым углом).

Крепить кронштейн к трубе необходимо жёстко, поэтому лучше, если напорный трубопровод будет изготовлен из металлических труб.

Так выглядит механизм привода

Шаровой кран должен быть хорошего качества. Сопротивление усилию закрывания и рывки во время поворота его рукоятки не допускаются.

Работа механизма защиты от протечек (видео)

Электронная система противодействия затоплению

Электронная система состоит как минимум из трёх блоков. Это датчик протечки, устанавливаемый на полу помещения, блок управления и исполнительный механизм.

Работает такая система следующим образом: при появлении влаги замыкается цепь между электродами датчика. Это даёт команду блоку управления подать питающее напряжение на электрический привод, который и перекрывает подачу воды. Датчик протечки и блок управления можно изготовить самостоятельно. В качестве исполняющего механизма понадобится электроклапан или шаровый кран с сервоприводом.

Изготовления датчика

Простейший датчик протечки – это два расположенных на некотором удалении друг от друга проводника. Однако, согласитесь, что оголённые провода на полу ванной или туалета будут смотреться как минимум нелепо, а как максимум предоставлять опасность поражения электрическим током. Поэтому можно изготовить датчик, протравив дорожки на печатной плате из фольгированного текстолита, а в качестве корпуса использовать кнопку от дверного звонка.

Использование корпуса дверного звонка в качестве датчика протечки

Работу следует выполнять в следующем порядке:

  • Вырезать плату по размеру кнопки;
  • Методом ЛУТ или с помощью фоторезиста необходимо вытравить на поверхности плат дорожки;
  • Залудить печатные проводники при помощи паяльника;
  • Припаять к проводникам скобы в качестве ножек;
  • Подключить соединительный провод;
  • Установить печатную плату в корпус кнопки звонка.

Схема печатной платы

Саму кнопку при этом демонтировать не нужно, с её помощью можно замыкать линию для проверки работоспособности системы.

Электрическая схема блока управления

Питание системы осуществляется при помощи небольшого аккумулятора напряжением 12В. Главным требованием к источнику питания является его низкий саморазряд. Так как ток, потребляемый схемой в дежурном режиме ничтожно мал, то подзаряжать аккумулятор придется буквально пару раз в год.

Схема управления закрытием шарового крана работает следующим образом. В дежурном режиме тока через датчик нет, транзисторы закрыты, реле обесточено. При появлении воды на базе транзистора VT1 появляется напряжение смещения, вследствие чего транзистор открывается и подаёт питание на базу более мощного транзистора VT2. В свою очередь открытый транзистор VT2 управляет электромагнитным реле, которое подаёт питание на исполняющий механизм.

Пример схемы управления закрытием шарового крана

В электрической схеме можно использовать транзисторы структуры n-p-n с любой маркировкой. Транзистор VT2 должен быть средней мощности. Резисторы R1, R2 – маломощные.

Усовершенствованная электрическая схема показана на следующем рисунке. Она рассчитана на подключение двух мотор-редукторов.

Пример усовершенствованной электрическая схемы

Исполняющий механизм

Конечно же, исполняющий механизм можно собрать самостоятельно, используя для этого подходящий мотор-редуктор и концевые выключатели. Однако проще и надёжнее будет приобрести шаровой кран с сервоприводом заводского изготовления. Приобретая такое устройство, убедитесь в том, что его конструкцией предусмотрены концевые выключатели, размыкающие цепь в крайних положениях.

Конечно, цена этих приборов намного выше пластиковых собратьев, но и надежность их работы не вызывает нареканий.

Исполнительный механизм

После присоединения датчика, блока управления и электрического крана к источнику питания, производят испытание системы. Для этого наливают немного воды на место установки датчика.

В.КОНОВАЛОВ, лаборатория "Автоматика и связь", г.Иркутск.
Подавляющее большинство бытовых электроприборов не имеют защитного заземления. Международный стандарт требует наличия дополнительного контакта заземления в сетевых вилках и розетках, но даже с ним не обеспечивается полная безопасность при пользовании электроприборами. А использовать в качестве заземляющей линии нулевой провод сети категорически запрещено, так как обрыв линии может привести к появлению на нулевом проводе сетевого напряжения!

Кроме того, сетевые предохранители и автоматические защитные устройства могут не сработать при небольшом токе утечки, возникающем при касании человеком фазного провода сети, но этого тока вполне достаточно для поражения человека (например, автоматы в электрощитах срабатывают от тока свыше 5 А, а поражающий ток для человека составляет 0,1 А).
Избежать электротравм поможет предлагаемое автоматическое устройство, которое отключит неисправный электроприбор, как только на его корпусе появится напряжение утечки, т.е. раньше, чем сработает защита сети. Защитное устройство электрически не связано с нагрузкой и выполнено как переходник.


Блок-схема устройства защиты (рис.1) содержит:
- транзисторный триггер;
- тиристорное релейное устройство;
- трансформаторы тока;
- стабилизированный источник для питания устройства;
- светодиодную сигнализацию. Работа устройства основана на контроле тока в цепях питания нагрузки. Напряжения на обмотках трансформаторов тока Т1 и Т2, пропорциональные протекающему току нагрузки, алгебраически суммируются, и их сумма при отсутствии утечки равна нулю.
Превышение тока в одной из цепей питания нагрузки (утечка) создает разность магнитных полей в трансформаторах, возникает разностное напряжение, которое выпрямляется мостом VD1, сглаживается конденсатором фильтра С4 и поступает на транзисторный триггер VT1, VT2. Конденсатор С2 на
входе выпрямительного моста VD1 устраняет ложные срабатывания устройства от помех в сети.

В исходном состоянии транзистор VT1 закрыт, a VT2 открыт, напряжение на управляющем электроде тиристора VS1 близко к напряжению на его катоде (-Uпит), и он также закрыт. Реле К1 выключено, поэтому через его нормально замкнутые контакты К1.1 и К1.2 сетевое напряжение подается на нагрузку (подключенный электроприбор).
Когда уровень напряжения на базе VT1 превышает пороговый, т.е. ток утечки становится больше заданного, транзистор VT1 открывается, a VT2 закрывается. Напряжение на управляющем электроде тиристора стремится к нулю (анодному потенциалу), тиристор открывается и включает реле. Контакты реле при этом размыкаются и обесточивают нагрузку. Резистор R3 позволяет установить необходимую чувствительность триггера в зависимости от характеристик транзисторов и трансформаторов.
Поскольку в цепи постоянного тока тиристор остается включенным даже после снятия открывающего напряжения с управляющего электрода, устройство осуществляет блокировку и оставляет нагрузку в отключенном состоянии. Для включения нагрузки после выявления причины утечки и ее устранения нужно отключить и повторно включить устройство защиты.
Схема питания устройства защиты состоит из сетевого трансформатора ТЗ (напряжение на вторичной обмотке - 12 В/0,1 А), выпрямительного моста VD3, сглаживающих конденсаторов СЗ, С6 и интегрального стабилизатора на микросхеме DA1. Индикация включения устройства выполнена на светодиоде HL1. Трансформаторы тока Т1 и Т2 выполнены на ферритовых кольцах диаметром 18 мм из феррита 2000НМ. Они содержат обмотки, состоящие из 96 витков провода ПЭЛ-2 Ø0,1 мм. Сетевые провода питания нагрузки пропущены через внутренние отверстия ферритовых колец. Типы используемых элементов и их возможные замены указаны в таблице.


Детали устройства защиты размещены на печатной плате из одностороннего фольгированного
стеклотекстолита.толщиной 1,5 мм и размерами 100x50 мм. Чертеж платы и расположение деталей показаны на рис.2.

Готовая плата устанавливается в пластмассовую монтажную коробку БП-1 с розеткой для подключения нагрузки. Индикаторные светодиоды выносятся на внешнюю панель корпуса, трансформаторы тока закреплены на плате "навесом".
Регулировка устройства заключается в установке чувствительности транзисторного триггера. При отсоединенных от схемы трансформаторах Т1 и Т2 резистор R3 устанавливают в положение, когда включается реле К1, и плавно возвращают движок резистора немного назад, чтобы триггер отключился. Контроль переключения можно отследить по светодиоду HL2: его свечение указывает на включенное состояние нагрузки, потухание - на отключенное (аварийное состояние). Концы обмоток трансформаторов Т1, Т2 соединяют последовательно так, чтобы при подключении нагрузки (например, настольной лампы) переменное напряжение на конденсаторе С2 было равно нулю. Создав искусственную утечку, т.е. подав переменное напряжение величиной 1 ...5 В (с вторичной обмотки любого сетевого трансформатора) через ограничивающий резистор сопротивлением 100 Ом на выпрямитель VD1, прослеживают выключение нагрузки. Трансформаторы Т1, Т2 при этом отключать не следует.
Устройство предназначено для защиты потребителей мощностью не более 200 Вт. Электроприборы большей мощности следует подключить через электомагнитный пускатель, катушку которого запитать от сети через нормально замкнутые контакты реле К1 (К1.1 или К1.2).
РМ 1/2013

УЗО монтируются в распределительных щитках после главного (вводного) автомата. Допускается установка одного УЗО (ток утечки 30 мА) на всю квартиру (дом). В этом случае для его защиты целесообразным будет установка после него автомата, меньшего номинала по амперажу (если УЗО стоит на 32 А, то автомат должен быть на 25 А). Минусом такого способа установки будет полное отключение напряжения в квартире при его срабатывании.

Неплохой альтернативой связки УЗО+автомат будет установка дифференцированного автомата, совмещающего в себе автомат и УЗО. Это хороший выход, если в электрощите недостаточно места. Дифиринциальный автомат занимает меньшее количество модулей. Однако его стоимость будет гораздо больше стоимости УЗО+автомат даже для дифференциальных автоматов отечественного производства.

Хороший вариант - одно "вводное" УЗО + дополнительные отходящие на каждую нужную отходящую от щита группу, линию (ванная комната, кухня, детская). Минус этого способа - более высокие затраты на электрооборудование и необходимость иметь место в щите под дополнительные УЗО.

Сколько именно приборов УЗО потребуется для конкретной квартиры, точно ответит лишь специалист после проведения соответствующих расчетов. Однако, зная принцип подсчета, можно и самому провести предварительную раскладку. Например, в однокомнатной квартире достаточно подключить в контур розеток одно УЗО, рассчитанное на ток утечки в 30 мА.

В четырехкомнатной квартире, где установлено пятнадцать групп розеток, разумно использовать пять УЗО, а также по одному устройству на всю группу освещения, и отдельно на электроплиту и водонагреватель. Более чуткий прибор с номинальным отключающим дифференциальным током 10 мА желательно подключить к сети стиральной машины.

Для контроля всей электропроводки на входе в коттедже или многокомнатных апартаментах можно установить дополнительно к расчетным одно общее УЗО с номинальным отключающим током 300 мА. Однако чтобы не перегружать домашнюю сеть обилием автоматики, можно использовать приборы дифференциального плана, совмещающие обе защитные функции.

Производятся также УЗО встроенные в розетку - устанавливаются они на место имеющейся розетки, или же в виде переходника, который просто втыкают в розетку, а уже в него - вилка электроприбора. Имеется аналог УЗО встроенные в розетки, это - УЗО встроенные в вилки.

Такие УЗО хороши своей простотой подключения, избавляя от замены электропроводки в нужных помещениях (обычно ванные комнаты, кухни), но сильно проигрывают УЗО, монтируемым в электрощитах по своей цене - они будут дороже примерно в 3 раза.

Для повышения защищённости электрооборудования также применяются дополнительные устройства, датчик превышения напряжения (ДПН) или устройство защиты многофункциональное (УЗМ).

Датчик превышения напряжения, ДПН 260 - предназначен для ограничения максимально допустимого напряжения на нагрузке. ДПН 260 работает совместно с УЗО или дифференциальным автоматом с током утечки 30 - 300 мА. Напряжение срабатывания ДПН 260 устанавливается в пределах 255 - 260 В, время срабатывания - 0,01 сек. Выполнен в стандартном модуле (D=18 мм) и предназначен для установки на DIN - рейку 35 мм.

В последнее время широко применяются УЗМ - устройство защиты многофункциональное (УЗМ 30, УЗМ 31, УЗМ 40, УЗМ 41). Оно предназначено для защиты подключённого к нему оборудования от разрушающего воздействия мощных импульсных скачков напряжения, вызванных электромагнитными импульсами близких грозовых разрядов или срабатыванием близкорасположенных и подключённых к этой же сети электромоторов, магнитных пускателей или электромагнитов, а также для отключения оборудования при выходе сетевого напряжения за допустимые пределы (170 - 270В или 170 - 250В в зависимости от применяемого УЗМ) в однофазных сетях. Включение оборудования происходит автоматически при восстановлении сетевого напряжения до нормального, по истечении задержки повторного включения.

В отличии от ДПН 260, которое работает только с УЗО, это самостоятельное устройство и может быть подключено в существующую сеть как дополнительное средство защиты.

Фазный провод обязательно подключается к клемме «L», а нулевой к клемме «N».

Основные параметры УЗМ:

Макс. ток шунтирования импульсов варистором 8000 А
Обеспечивает подавление импульсов с энергией до 200 Дж
Защита нагрузки от повышенного напряжения более 250/270 В
Защита нагрузки от пониженного напряжения менее 170 В
Фиксированная задержка срабатывания 0,2с
Фиксированная задержка повторного включения: 1мин (УЗМ-30, УЗМ-40, УЗМ-31, УЗМ-41)
6мин (УЗМ-50)
Сохраняет работоспособность в широком диапазоне
напряжения питания 0...440 В
Время срабатывания импульсной защиты, нс: <25

Наименование Uверх, В Iн max, А
УЗМ-31 250 30
УЗМ-41 250 40
УЗМ-30 270 30
УЗМ-40 270 40
УЗМ-50 270 50

Бытовые электроприборы работают с большими нагрузками и часто выходят из строя. Одной из неисправностей вполне может быть повреждение изоляции на сетевом шнуре. При этом появляется потенциал сети на корпусе прибора. Он остается в исправном состоянии и может работать, но уже представляет опасность для человека. При одновременном прикосновении к металлической части корпуса и водопроводной трубе или другой металлической конструкции, связанной с землей, происходит замыкание электрической цепи через тело, приводящее к удару током. Для предотвращения подобных явлений было создано устройство защитного отключения.

Подключение устройства защитного отключения

Принцип работы УЗО – это отключение нагрузки коммутационным механизмом при достижении током утечки заданной величины. Устройство является надежной защитой от поражения поверхностями, находящимися под напряжением, и от возникновения пожара при утечке тока через неисправную изоляцию. Проще говоря, механизм аппарата мгновенно отключает питающую сеть от потребителя, если возникает непредвиденная утечка тока в «землю».

Виды

Чтобы выбрать нужные устройства, надо знать их различия, классифицирующиеся по следующим признакам.

По реакции на ток утечки

  • АС – прибор размыкает цепь при медленном или быстром увеличении переменного тока утечки;
  • А – реагирует на постоянный или переменный ток ;
  • В – применяется в промышленности.

Главным параметром устройства является значение тока утечки. Отсчет идет от 30 мА. При большей величине тока устройство срабатывает для защиты от пожара, но для человека удар током представляет опасность. При меньших значениях болезненное воздействие остается, но опасности для жизни здорового человека нет. В жилых домах выбирают УЗО с током отключения не выше 30 мА, за исключением входного.

По принципу работы

Различают электромеханические (УЗО-Д, УЗО-ДМ) и электронные устройства (УЗО-ДЕ). Последние – применяются преимущественно в качестве дополнительных: для повышения надежности защиты в помещениях с высокой влажностью. В них может содержаться устройство сравнения со встроенным источником питания вместо магнитоэлектрического элемента. При этом сигнал необходимо усиливать и преобразовывать, что существенно снижает надежность защиты. Аппараты ограничены по возможностям, но от большинства неприятностей выручают. Устройства с электронным разрывом цепи чаще применяют в связи с тем, что они дешевы, и быстрота срабатывания (0,005 с и менее) позволяет избежать удара током. Электромеханические УЗО более надежны, благодаря независимости от колебаний напряжения сети и отсутствия необходимости во внешнем питании.

По скорости реагирования

Устройства бывают неселективные, реагирующие на неисправность быстрее, чем за 0,1 с, и селективные – с задержкой срабатывания от 0,005 с до 1 с. Она создается специально для того, чтобы системы защиты разных уровней успели сработать раньше. В этом случае поврежденный участок отключается, а все остальные продолжают работать. Селективные УЗО предназначены для защиты от пожара. После них обязательно надо устанавливать защитные устройства с безопасными порогами токов утечки на низших ступенях подключений.

В лечебных, детских и учебных учреждениях применяют сверхбыстродействующие электронные УЗО (менее 0,005 с), поскольку они защищают от ударов даже небольшого тока.

По числу полюсов

В однофазной сети УЗО имеет 2 полюса и применяется в квартирах. В трехфазной сети устанавливаются аппараты с четырьмя полюсами. Они могут защищать несколько однофазных сетей или приборы с трехфазным питанием.

Способы монтажа

  • на распределительный щит;
  • подключение на удлинителе;
  • встроенные в вилку или в розетку.

Как работает УЗО

Срабатывание защиты удобно рассмотреть на принципиальной схеме.

Принципиальная схема работы УЗО

Главный элемент – это трансформатор тока нулевой последовательности. Две обмотки в нем подключаются навстречу друг другу и связаны с нулевым и фазным проводами, а третья – к пусковому чувствительному реле, вместо которого может быть электронное устройство. Реле связано с исполнительным устройством управления, содержащим группу контактов и привод. Для проверки работоспособности УЗО в нем имеется тестовая кнопка.

При подключении нагрузки к выходу схемы в цепи появляется ток нагрузки. Магнитные потоки, появляющиеся в сердечнике трансформатора, взаимно гасят друг друга. В результате в исполнительной обмотке не будет наводиться ток, и поляризованное реле будет отключено.

Если происходит повреждение изоляции в контакте с металлическими частями электроустройства, на нем появляется напряжение. При прикосновении человека к открытым токопроводящим частям через него в землю протекает ток утечки I D (дифференциальный ток). В результате через основные обмотки потекут разные токи: I D = I1 – I2. Они создадут разные магнитные потоки, в результате наложения которых друг на друга в исполнительной обмотке появится ток. Если его величина превысит заданный уровень, пусковое реле сработает и передаст сигнал на исполнительный механизм, отключающий силовую электрическую цепь от установки, где произошел пробой.

Контроль исправности УЗО производится путем нажатия кнопки тестирования. Резистор R подбирается по величине так, чтобы создаваемый искусственно ток утечки был равен паспортному значению. Таким образом, если при нажатии на кнопку устройство отключится, значит, оно исправно.

Устройство для трехфазной сети работает аналогичным образом, но через проем сердечника проходят четыре провода (3 фазных и 1 нулевой).

Схема работы трехфазного УЗО

При нормальной работе токи в нулевом и фазных проводах суммируются таким образом, что магнитные потоки в сердечнике взаимно гасят друг друга. Во вторичной обмотке трансформатора ток отсутствует. При появлении тока утечки через одну из фаз, равновесие нарушается и образующийся в результате ток во вторичной обмотке действует на управляющий элемент (У), отключающий потребителя (М) от сети.

Утечки могут происходить не только в фазных, но и в нулевых проводах. Защита реагирует на них одинаково, но с обнаружением повреждения изоляции на нейтрали может потребоваться демонтаж схемы. Чтобы этого не делать, применяют двух- и четырехполюсные выключатели, с помощью которых производится коммутация фазных и нулевых проводов.

УЗО является сложным и очень чувствительным прибором. Выбирать устройства на рынке следует у известных фирм, имеющих сертификаты установленной формы со ссылками на ГОСТы. Небольшие партии экспортных изделий могут оказаться подделкой. Параметры покупаемого прибора следует соотносить с характеристиками известных устройств, например, УЗО-2000.

Схемы подключения

Включение защиты по току утечки в распределительных щитах производится, если применяются системы TNS или TN-C-S. При этом к нулевой шине заземления PE подключаются корпуса всех электроприборов. При нарушении изоляции ток утечки стекает с корпуса прибора в землю через проводник PE, приводя к срабатыванию защиты.

При любом подключении УЗО учитываются следующие правила:

  1. Для нулевого проводника и заземления в щите устанавливаются отдельные шины.
  2. Проводник заземления не участвует в подключении устройства.
  3. Питание подключается к верхним клеммам аппарата. При этом нейтраль подсоединяется к разъему с обозначением «N». Путать ее с фазой недопустимо!
  4. Допустимый ток устройства должен быть равным или выше тока автомата.

Однофазный ввод

Схема предусматривает обязательное разделение нулевой шины (N) и земли (PE). Если поставить защиту на отдельные части, то так обеспечивается каскадное отключение в системе.

Схема подключения УЗО к однофазной сети

Схема является простой и одной из самых распространенных. Для УЗО важно не ошибиться, где располагается нейтраль (N), входящий (1) и исходящий (2) проводники. Подключают УЗО всегда после автоматического выключателя . Затем к его выходу можно снова подключать автоматы для отдельных линий.

Трехфазный ввод

В трехфазной схеме можно защищать также однофазных потребителей. Вводы шин «нуля» и «земли» совмещаются. Электросчетчик устанавливается между главным автоматом и УЗО.

Схема трехфазного подключения УЗО

Ток нагрузки УЗО должен быть защищен от перегрузок. Для этого его подбирают на ступень выше, чем у рядом стоящего автомата.

С точки зрения применения УЗО следует отличать рабочий нулевой провод N и защитный ноль земли PE. По первому ток течет в режиме нормальной работы, а по второму только тогда, когда происходит авария (утечка).

Часто встречается неправильное подключение, вызывающее постоянное срабатывание защиты. При этом только оно одно может вызвать сбой в работе целой группы.

УЗО в квартирах

Для квартиры выбирается двухполюсная установка УЗО. Также нужно определить значения электрического тока, которые ее характеризуют:

  • отсечки превышает на 25% максимальный ток потребления;
  • номинальный ток, на который рассчитан прибор (указан в характеристике и должен превышать ток отсечки);
  • дифференциальный показатель срабатывания защиты.

Для квартиры выбирается прибор с переменным током. При большом количестве техники возможны необоснованные срабатывания УЗО. Чтобы этого не происходило, увеличивают пороговое значение тока до максимально приемлемого и безопасного для человека (30 мА).

Устройство крепится в щитке на DIN-рейки или через специальные отверстия. Оно имеет маркировку фазного и нулевого проводов. Вход делается сверху, а выход – снизу.

Одноуровневая защита одним устройством на входе позволяет прекратить подачу электричества в квартиру полностью. Ее также устанавливают на отдельные устройства, например, на стиральную машину или электроплиту.

Если разместить УЗО на отдельных участках, схема получится громоздкой, но зато отключения будут автономными. Для отдельного прибора подключение производится перед автоматом.

Распространенные ошибки при подключении.

  1. Сплетение нулевых проводов в узел. В результате происходят непредвиденные срабатывания.
  2. Изготовление самодельного заземления не по правилам (сопротивление выше 4 ом).
  3. Соединение «нуля» с «землей» приводит к периодическим отключениям электричества.

УЗО в частном доме

Частные домовладельцы применяют большое количество устройств, требующих наличия индивидуального УЗО. К ним относятся стиральная машина, электрический котел системы отопления, печь для сауны, станки, сварочный трансформатор и другое оборудование. Чем длиннее перечень, тем больше вероятность выхода из строя его элементов.

Для индивидуального дома подходит система ТТ с глухим заземлением нейтрали и подсоединением токопроводящих частей приборов к независимому заземлению. Оно чаще всего делается модульно-штыревым.

УЗО размещают в щите. Применяют четырехполюсные и двухполюсные устройства в зависимости от того, какие подключаются потребители: однофазные или трехфазные. Принцип каскадного включения остается, но схема получается сложней. Ввод делается трехфазным, а потребителей гораздо больше, чем в квартире. Общие правила подключения защиты те же, что и в квартире.

В частном доме часто применяют дифавтоматы , совмещающие в себе функции УЗО автоматического выключателя. Его преимущества следующие:

  • меньше места в щитке;
  • простота установки;
  • срабатывание по причине утечки, короткого замыкания или перегрузки;
  • цена ниже, чем у двух отдельных устройств, функции которых он объединяет.

Аналогично УЗО дифавтоматы имеют много вариантов подключения : с заземлением и без него, по селективному или неселективному способу. К ним также подключаются фаза и ноль цепи, который не допускается объединять с заземлением, поскольку токи в этих проводниках принципиально отличаются.

Дифференциальные автоматы в частном доме

Недостаток: при выходе из строя приходится снова покупать дифавтомат, что равноценно замене сразу двух устройств. Также не все умеют пользоваться таким сложным оборудованием и предпочитают обходиться одними автоматами. Но при этом подключение заземления к корпусам приборов без УЗО или дифавтоматов недопустимо. Обычные автоматы не обеспечивают скорости отключения сети, необходимой для безопасности человека.

Правила применения УЗО также актуальны для дифференциальных автоматов.

Подключение УЗО. Видео

Данное видео подробно расскажет про схему подключения устройства защитного отключения.

Действие устройства защитного отключения основано на ограничении времени протекания электрического тока через тело человека (путем быстрого отключения) при случайном прикосновении к находящимся под напряжением частям электроустановок. Некоторые схемы его подключения предусматривают также отключение сети сразу при возникновении тока утечки через провод заземления.

При правильной установке и обслуживании УЗО обеспечивают безопасное пользование электроприборами в квартире и доме. Надежными являются электромеханические устройства защиты от поражения током , соответствующие требованиям ГОСТов.

УЗО необходимо в современном жилье, поскольку его стоимость неизмеримо ниже, чем у современной бытовой и электронной техники, которая может выйти из строя, но важнее всего является обеспечение электробезопасности.

Разработанное автором много лет назад и описанное в статье "Защита от тока" ("Моделист-конструктор", 1981, № 10, с. 29, 30) защитно-отключающее устройство срабатывало при появлении на незаземленном металлическом корпусе защищаемого прибора напряжения более 24 В относительно земли. Сегодня заземление корпусов приборов стало обязательным и представляется более правильным контролировать ток в заземляющем проводе. В случае нарушения изоляции между корпусом и сетью допустимое значение этого тока (4... 10 мА) будет превышено, что и послужит сигналом к отключению неисправного прибора от сети.

Схема устройства защиты, действующего по такому принципу, показана на рис. 1. Вилку ХР1 вставляют в сетевую розетку, оснащенную заземляющим контактом. К розетке XS1 подключают сетевую трехконтактную вилку защищаемого электроприбора. Электронный узел защитного устройства питается от сети через понижающий трансформатор Т2 и мостовой выпрямитель на диодах VD2-VD5. Напряжение питания микросхемы-таймера DA1 и усилителя на транзисторе VT1 стабилизировано с помощью стабилитрона VD6.

В разрыв провода, соединяющего заземляющие контакты вилки ХР1 и розетки XS1 (цепь РЕ) включена первичная обмотка трансформатора тока Т1. Напряжение, пропорциональное протекающему по ней току, выделяется на резисторе R1 и после выпрямления одно-полупериодным выпрямителем на диоде VD1 через усилитель постоянного тока на транзисторе VT1 поступает на вход S таймера DA1.

Если ток утечки отсутствует, напряжение на коллекторе транзистора и на входе таймера имеет высокий, а на выходе таймера (выв. 3) низкий логический уровень. При увеличении тока утечки сверх допустимого значения высокий уровень напряжения на коллекторе VT1 сменится низким, что разрешит работу таймера DA1. На его выходе появятся импульсы положительной полярности, первый из которых откроет тринистор VS1. Реле К1, разомкнув контакты, отключит нагрузку от сети. Мигание светодиода HL1 покажет, что защита сработала. Частота мигания (1 ...5 Гц) зависит от номиналов резисторов R7, R8 и конденсатора Сб.

После устранения утечки тринистор VS1 останется открытым, а контакты реле К1.1 - разомкнутыми. Для того чтобы подать на нагрузку сетевое напряжение, устройство защиты необходимо возвратить в исходное состояние: выключить на некоторое время, нажав на кнопку SB1, и вновь включить, отпустив ее.

Конденсаторы С1 и С4 устраняют ложные срабатывания от кратковременных помех в сети. Цепь R6C5 предотвращает запуск таймера в результате переходных процессов при включении питания. Цепь R9C8VD7 подавляет коммутационные выбросы напряжения на обмотке реле К1.

Печатная плата устройства защиты и расположение деталей на ней изображены на рис. 2. Транзистор КТ3102А можно заменить другим той же серии или серий КТ312, КТ315. Импортные аналоги таймера КР1006ВИ1 - NE555 и многие другие с цифрами 555 в обозначении. Тринистор КУ101Б в рассматриваемом устройстве можно заменить одним из серий КУ201, КУ202.

Реле К1 - РЭС47 исполнения РФ4.500.407-01 (сопротивление обмотки - 160...180 Ом). При мощности нагрузки более 1 кВт ее необходимо коммутировать с помощью реле с более мощными контактами, а установленное на плате реле К1 использовать как промежуточное.

Трансформатор тока Т1 изготовлен из согласующего трансформатора от трансляционного громкоговорителя. Магнитопровод трансформатора - стальной Ш8х10. Обмотка с меньшим числом витков удалена, а на ее место намотаны три витка изолированного провода диаметром около 2 мм - зто первичная обмотка трансформатора тока. Бывшая первичная обмотка согласующего трансформатора теперь становится вторичной. Ее выводы подключают к резистору R1. Трансформатор питания Т2 - любой понижающий с первичной обмоткой на 220 Вис двумя соединенными последовательно вторичными обмотками на 9 В, 100 мА или с одной вторичной на 15...18 В. Значение тока срабатывания защиты должно находиться в интервале 4...10 мА. Этого добиваются подборкой резистора R2, а при необходимости, и изменением числа витков первичной обмотки трансформатора тока Т1. Утечку в 10 мА можно имитировать, включив первичную обмотку трансформатора Т1 в сеть 220 В через резистор 22 кОм мощностью не менее 5 Вт.