Сейчас мы займемся рассматриванием микросхемы TDA1029 производства небольшой европейской компании Philips. У этой небольшой европейской компании есть небольшое отделение по производству небольших полупроводниковых приборов. Я сам очень удивился - оказалось, что Philips выпускает еще что то кроме мобильников и прочей бытовой дребедени.

Так, к делу.
Вышеозначенная микросхемка представляет собой селектор сигналов для различных усилителей. В 16-ногом корпусе поместились 4 стереовхода и 1 стереовыход.
Основные параметры следующие:

В общем и целом очень даже неплохо, не правда ли? Так же в микросхему встроены следующие вкусности: бесшумное переключении входов, защита выхода от короткого замыкания.

Смотрим схему включения:

В принципе и комментировать то особо нечего. Слева от нас входы справа - выход. Так же справа переключатели выходов. Если не замкнут ни один из выключателей, то сигнал снимается с первого входа - самого верхнего по схеме. Если же замыкается один из переключателей, то селектор переключается в соответствующее состояние. Переключатели могут быть любого типа - через них не проходит звуковой сигнал, так что можно ставить все что придет в голову - тем и хорош электронный переключатель - у него нет контактов, которые со временем окисляются или протачиваются. Очень удобно во всех отношениях. Паяем и пользуемся.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Микросхема TDA1029 1 В блокнот
С1-С8, С10 Конденсатор 0.22 мкФ 9 В блокнот
С9 Электролитический конденсатор 100 мкФ 20 В 1 В блокнот
R1-R8 Резистор

470 кОм

8 В блокнот
S1-S3 Выключатель 3

Рассмотрено 6 принципиальных схем самодельных электронных выключателей и реле времени, выполненных на основе микросхем К561ТМ2 и CD4060, описана их работа и возможности по применению. В настоящее время в радиоэлектронной аппаратуре, в основном, электронные выключатели, либо и электронный и механический.

Электронный выключатель управляется обычно одной кнопкой, - одно нажатие, и аппарат включен, при следующем нажатии -выключен. Реже бывают с двумя кнопками, - одна для включения, вторая для выключения.

Электронный выключатель в радиоэлектронной аппаратуре в подавляющем большинстве случаев входит в состав контроллера управления, управляющего и другими функциями аппарата.

Но, если нужно оборудовать электронным выключателем какое-то устройство, самодельное или у которого не предусмотрен электронный выключатель, это можно по одной из приводимых здесь схем, на основе микросхемы КМОП-логики и мощного полевого ключевого транзистора.

Выключатель управляемый одной кнопкой

Первая схема простого выключателя, управляемого одной кнопкой приведена на рисунке 1. Мощный полевой транзистор VТ1 выполняет функции электронного ключа, а управляет им D-триггер микросхемы К561ТМ2.

Данная схема, как и все последующие, потребляет минимальный ток, измеряемый единицами микроампер, и поэтому, практически не оказывает влияния на расход источника питания.

Рис. 1. Схема простого электронного выключателя, управляемого одной кнопкой.

То есть, на его прямом выходе - единица. При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, - питание на нагрузку не поступает.

При этом, на инверсном выходе триггера будет напряжение логического нуля. Оно через резистор R3, с небольшой задержкой, поступает на вход «D» триггера.

Теперь, при нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в логический нуль.

Теперь на инверсном выходе триггера -единица. Эта единица, с небольшой задержкой, через резистор R3 поступает на вход «D» триггера.

Теперь, при следующем нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в единицу. Единица на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 падает до величины, недостаточной для открывания полевого транзистора VТ1. Нагрузка выключается.

Электронный переключатель двух нагрузок

Но не всегда требуется именно выключатель, бывает что нужен переключатель. На рисунке 2 показана схема электронного переключателя двух нагрузок. Главное отличие от схемы на рис.1 в том, что здесь два мощных полевых транзистора.

При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, питание на нагрузку 1 не поступает. А напряжение между истоком и затвором транзистора VТ2 будет достаточным для его открывания, и транзистор откроется, поступит питание на нагрузку 2.

Рис. 2. Схема простого самодельного электронного переключателя двух нагрузок.

При этом, нуль с инверсного выхода триггера через резистор R3, с небольшой задержкой, поступает на вход «D» триггера. Теперь, при нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в логический нуль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ 1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку 1 поступает питание.

Но транзистор VТ2 при этом закрывается, и нагрузка 2 выключается. Таким образом, при каждом нажатии кнопки S1 происходит переключение нагрузок.

Несколько слов, о назначении цепи C2-R3 в схемах на рис.1 и рис.2. Дело в том, что кнопка -это механические контакты, которые соединяются механически, и здесь практически не возможно обойтись без дребезга контактов. И чем больше износ кнопки, тем сильнее проявляется дребезг её контактов.

Поэтому, как при нажатии кнопки, так и при её отпускании, может формировать не один импульс, а целая серия коротких импульсов. И это может привести к многократному переключению триггера, и в результате, установке его в произвольное состояние. Чтобы такого не происходило здесь есть цепь C2-R3.

Она несколько задерживает приход логического уровня с инверсного выхода триггера на его вход «D». Поэтому, пока длится дребезг контактов, напряжение на входе «D» не меняется, и импульсы дребезга на состояние триггера не влияют.

Выключатель с двумя кнопками

Как уже отмечено выше, электронные выключатели бывают как с одной кнопкой, так и с двумя, - одна для включения, другая для выключения. На рисунке 3 показана схема именно выключателя.

Рис. 3. Схема электронного выключателя нагрузки с двумя кнопками.

Здесь точно так же, мощный полевой транзистор VТ1 выполняет функции электронного ключа, а управляет им триггер микросхемы К561ТМ2. Только работает он не как D-триггер, а как RS-триггер. Для этого его входы «С» и «D» соединены с общим минусом питания (то есть, на них всегда логические нули).

Для того чтобы в момент подключения источника питания нагрузка не включилась сама здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние.

То есть, на его прямом выходе - единица. При этом, напряжение между истоком и затвором транзистора VT1 будет слишком мало для его открывания, и транзистор остается закрытым, - питание на нагрузку не поступает.

Для включения нагрузки служит кнопка S1. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 возрастает до величины, достаточной для открывания полевого транзистора VT1.

На нагрузку поступает питание. Для того, чтобы выключить нагрузку нужно нажать кнопку S2. При её нажатии триггер переключается в положение «S», то есть, на его прямом выходе устанавливается логическая единица.

Единица на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 падает до величины, недостаточной для открывания полевого транзистора VT1. Нагрузка выключается.

Две кнопки и две нагрузки

Электронный переключатель с двумя кнопками работает логичнее однокнопочного, во всяком случае понятно, что одна кнопка включается одну нагрузку, а другая - другую нагрузку. На рисунке 4 показана схема двухкнопочного электронного переключателя двух нагрузок.

Рис. 4. Схема электронного переключателя с двумя кнопками для двух нагрузок.

Для того чтобы в момент подключения источника питания схема устанавливалась в одно известное положение, то есть, в данном случае, нагрузка 1 выключена, нагрузка 2 включена, здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние. То есть, на его прямом выходе - единица, на инверсном - ноль.

При этом, напряжение между истоком и затвором транзистора VT1 будет слишком мало для его открывания, и транзистор остается закрытым, - питание на нагрузку 1 не поступает.

А напряжение между истоком и затвором транзистора VT2 будет достаточным для его открывания, и транзистор откроется, поступит питание на нагрузку 2. Для включения нагрузки 1 служит кнопка 51. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VT1 приводит к тому, что напряжение между истоком и затвором VT1 возрастает до величины, достаточной для открывания полевого транзистора VT1. На нагрузку поступает питание.

При этом, на инверсном выходе триггера присутствует логическая единица. Напряжение между истоком и затвором транзистора VT2 будет слишком мало для его открывания, и транзистор остается закрытым, - питание на нагрузку 2 не поступает.

Для включения нагрузки 2 служит кнопка 52. При её нажатии триггер переключается в положение «S», то есть, на его инверсном выходе устанавливается логический ноль. Логический нуль на затворе VT2 приводит к тому, что напряжение между истоком и затвором VT2 возрастает до величины, достаточной для открывания полевого транзистора VT2.

На нагрузку 2 поступает питание. При этом, на прямом выходе триггера присутствует логическая единица. Напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, - питание на нагрузку 1 не поступает.

Электронное реле времени

Но понадобиться могут не только выключатели и переключатели, но реле времени. На рисунке 5 показана схема электронного реле времени, которое включает нагрузку при нажатии кнопки S1, а выключает её примерно через 30 секунд.

Рис. 5. Схема электронного реле времени для включения нагрузки при нажатии кнопки и выключения через 30 секунд.

Реле времени запускается кнопкой S1. При её нажатии триггер переключается в положение «R», то есть, на его прямом выходе устанавливается логический ноль.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ 1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.

В то же время, логическая единица с инверсного выхода начинает через резистор R2 медленно заряжать конденсатор С1. Время включенного состояния нагрузки истекает тогда, когда конденсатор С1 зарядится до напряжения, которое будет понято микросхемой как логическая единица. Тогда триггер установится в состояние «S».

То есть, на его прямом выходе - единица. При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор закроется, -питание на нагрузку выключится. Время включенного состояния нагрузки зависит от цепи C1-R2.

Реле времени на 8 часов

Изменением составляющих этой цепи можно изменять это время в широких пределах, но очень большого времени выдержки достигнуть сложно. На рисунке 6 показана схема реле времени на цифровой микросхеме, время включенного состояния нагрузки в котором составляет около 8 часов.

Рис. 6. ЁПринципиальная схема реле времени на цифровой микросхеме, которое включает нагрузку на 8 часов.

Реле времени запускается кнопкой S1. При её нажатии счетчик микросхемы D1 переключается в нулевое состояние, то есть, на всех его выходах устанавливается логический ноль, в том числе и на самом старшем выходе D14. Откуда он поступает на затвор VТ1.

Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.

Далее, счетчик начинает отсчитывать время, считая импульсы, которые вырабатывает его встроенный мультивибратор. Спустя заданное время на выводе 3 устанавливается логическая единица. При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор закроется, - питание на нагрузку выключится.

В то же время, логическая единица через диод VD3 поступает на вывод 11 D1 и блокирует внутренний мультивибратор микросхемы. Генерация импульсов прекращается. Во всех схемах для подачи питания на нагрузку используются транзисторы IRFR5505. Это ключевой полевой транзистор с допустимым током коллектора 18А и сопротивлением в открытом состоянии 0,1 От.

Открывается транзистор при напряжении на затворе не ниже 4,25V. Поэтому и минимальное напряжение питания в схемах указано 5V, так сказать, чтобы точно хватило. Но, при напряжении питания схемы до 7V и при большом токе нагрузки транзистор все же открывается не полностью.

И сопротивление его канала существенно больше 0,1 Ом, поэтому, при питании ниже 7V ток нагрузки не должен превышать 5А. При питании же более высоким напряжением, ток может быть до 18А. Так же нужно учесть, что при токе нагрузки более 4А транзистору нужен будет радиатор для отвода тепла. Одно из свойств таких транзисторов, -это относительно большая емкость затвора.

И именно этого боятся микросхемы КМОП - относительно большой емкости на выходе. Потому что, хотя статическое сопротивление затвора и стремится к бесконечности, но при изменении напряжения на затворе возникает существенный бросок тока на заряд / разряд его емкости.

В очень редких случаях это повреждает микросхему, гораздо чаще это приводит к сбоям в работе микросхемы, особенно триггеров и счетчиков. Чтобы этих сбоев не происходило между выходами микросхем и затворами транзисторов в этих схемах включены токоограничивающие резисторы, например, R4 в схеме на рис.1. Плюс два диода, ускоряющих заряд / разряд емкости затвора.

Литовкин С. Н. РК-08-17.

Литература: И. Нечаев. - Электронный выключатель. Р-02-2004.

Схема электронного выключателя основана на микросхеме CD4013 , и имеет два устойчивых состояния, ON и OFF. Когда он включен, то и остается включенным, пока вы не нажмёте кнопку выключателя еще раз. Короткое нажатие кнопки SW1, переключает его в другое состояние. Устройство будет полезно для исключения громоздких и ненадёжных клавишных переключателей либо для дистанционного управления разными электроприборами.

Электронное реле - схема принципиальная

Контакты реле могут выдерживать высокое сетевое напряжения переменного тока, а также достаточный постоянный ток, что делает проект подходящим для таких приборов, как вентилятор, свет, телевизор, насос, электродвигатель постоянного тока, да и вообще любой электронный проект требует подобный электронный переключатель. Устройство работает от сети переменного тока напряжением до 250 В и коммутирует нагрузку до 5 A.


Параметры и элементы схемы

  • Питание: 12 вольт
  • D1: индикатор подачи питания
  • D3: индикатор включения реле
  • CN1: вход питания
  • SW1: выключатель

Транзистор Q1 можно заменить на любой похожей структуры с предельным током минимум 100 мА, например КТ815 . Реле можно взять автомобильное, или любое другое на 12 В. Если электронный выключатель требуется собрать в виде отдельной малогабаритной коробочки, имеет смысл питание схемы осуществить от маленького импульсного блока питания, типа зарядки мобильного. Поднять напряжение с 5 до 12 В можно заменой стабилитрона на плате. При необходимости вместо реле ставим мощный полевой транзистор, как это реализовано в

Электронный выключатель схема — это простая и недорогая электронная схема с дешевой тактовой кнопкой может управлять включением и выключением питания нагрузки. Схема заменяет более дорогой и крупный механический выключатель с фиксацией. Кнопка запускает ждущий мультивибратор. Выход мультивибратора переключает счетный триггер, логический уровень выхода которого, меняясь после каждого нажатия кнопки, коммутирует питание нагрузки.

Возможны несколько различных вариантов реализации этой схемы. Вариант, в котором использованы два J-K триггера IC1 и IC2 одной микросхемы CD4027B показан на Рисунке 1. Обратная связь, идущая от RC-цепочки, подключенной к выходу IС1 к входу сброса превращает этот триггер в ждущий мультивибратор. Вход J микросхемы IC1 подключен к шине питания, а вход К — к земле, поэтому по переднему фронту тактового импульса на ее выходе устанавливается «лог. 1». Тактовая кнопка включается между тактовым входом микросхемы IС1, и землей. Точно также кнопку можно включить между тактовым входом и положительной шиной питания VDD. Подключение выводов J и К к высокому уровню превращает IC2 в счетный триггер. Микросхема IС2 переключается передним фронтом выходного сигнала IC1.

Понять работу схему можно, посмотрев на временные диаграммы в ее разных точках, изображенные на Рисунке 2. При нажатии кнопки на тактовый вход IС1, начинают поступать импульсы дребезга, передний фронт первого из которых устанавливает на выходе высокий уровень. Конденсатор С1, начинает заряжаться через резистор R1 до уровня «лог. 1». В тот же момент нарастающий фронт импульса, пришедшего на тактовый вход счетного триггера IС2, переключает состояние его выхода. Когда напряжение на конденсаторе С1 достигает порога входа RESET микросхемы IC1 триггер сбрасывается, и уровень выходного сигнала становится низким.

После этого С1 разряжается через R1 до уровня «лог. О». Скорости заряда и разряда С1, одинаковы. Длительность выходного импульса мультивибратора должна превышать время нажатия на кнопку и продолжительность дребезга. Регулировкой подстроечного резистора R1 эту длительность можно изменять в соответствии с типом используемой кнопки. Комплементарные выходы IC2 можно использовать для управления транзисторными силовыми ключами, реле или выводами включения импульсных регуляторов. Схема работает при напряжении от 3 В до 15 В и может управлять питанием аналоговых и цифровых устройств.

— это электронное устройство собранное на мощных полевых транзисторах MOSFET, которые являются одним из самых важных коммутирующих элементов в современной бытовой и профессиональной электронной технике. Используется такие переключатели в основном в тех устройствах,где присутствуют большие нагрузки по постоянному току и способны заменить собой сильно-точный коммутационный аппарат с возможностью гашения электрической дуги,так как у таких устройств из за больших токов часто выгорают контактные площадки и они приходят в негодность. Электронный переключатель с использованием MOSFET-транзисторов таким явлениям не подвержен и отлично справляется с работой коммутации нагрузок при больших токах и напряжениях в различных силовых цепях.

Представленная здесь схема имеет возможность с легкостью управлять переключением больших нагрузок по постоянному току, используя при этом низкие значения импульсного напряжения — всего 5 В. Установленные в схеме MOSFET -транзисторы NTP6411 рассчитаны на работу с напряжением в 100V и током 75А,мощность этих электронных компонентов составляет около 200W.Такие параметры силовых транзисторов позволяет эффективно применять этот электронный переключатель в узлах автомобиля вместо штатного реле. Для активации транзисторов устройства используется как обычный выключатель так и импульсный вход,выбор метода ввода осуществляется установкой перемычки из отрезка изолированного провода на соответствующие выводы коннектора.

На практике наиболее эффективен и полезен вход с импульсным напряжением,так как он имеет низкие значения управляющего напряжения. Проектировалась схема для работы с постоянным напряжением 24V, но вполне успешно может быть использована и при других напряжения,при тестировании на 12 вольтах показала себя в работе с лучшей стороны,к тому же установленные MOSFET-NTP6411 могут быть заменены на другие N-канальные полевые транзисторы соответствующих электрических характеристик. Установленный в схеме диод D1 выполняет защитные функции,тем самым предотвращает броски напряжения исходящих от индуктивных нагрузок. Встроенные в плату светодиоды дают возможность визуального наблюдения за состоянием полевых транзисторов,а винтовые терминалы обеспечивают подключение электронного переключателя в разные модули. По завершению сборки MOSFET переключателя он прошел суточный тест обеспечивая работой электромагнитный клапан с напряжением питания 24 вольта и током пол-ампера,при этом полевые транзисторы находились в совершенно холодном состоянии,даже в отсутствии тепло-отводов.В общем схема зарекомендовала себя надежным устройством,способная работать в самых разных областях применения,в том числе и автомобильной электронике вместо реле или работать как управляющие устройство в светодиодном освещении.