Система дистанционного управления на ИК-лучах

В данной статье описывается простая 15-ти командная система дистанционного управления, работающая посредством инфракрасных лучей, и при построении необходимых выходных каскадов, способная управлять практически любым электронным устройством, обеспечивая дальность до 8-10 метров.

В основе системы ДУ лежит цифровая система частотного кодирования. Сущность принципа состоит в том, что на пульте управления устанавливается простой генератор прямоугольных импульсов, частоту которого можно менять выбирая кнопками сопротивления в RC-частото-задающей цепи. Каждой команде присваивается определенная частота импульсов. Эти импульсы поступают на электронный ключ, на выходе которого включен светодиод инфракрасного излучения. Таким образом, при нажатии на конкретную кнопку частота вспышек ИК-излучения, генерируемого светодиодом будет кодом именно этой команды.

Приемный узел состоит из интегрального фотоприемника (от импортного цветного телевизора), который принимает это излучение и преобразует его вспышки в прямоугольные импульсы, частота которых точно такая же как частота на выходе мультивибратора, установленного в пульте ДУ.

Далее, импульсы поступают на цифровой дешифратор, который представляет собой упрощенный цифровой частотомер. Счетчик частотомера построен таким образом, что на его выходах будет устанавливаться код номера переданной команды, как результат измерения частоты импульсов, передаваемых при передаче этой команды.

Принципиальная схема пульта показана на рисунке 1. На микросхеме D1 выполнен мультивибратор, вырабатывающий импульсы заданной частоты. Частота задается кнопками S1-S15, которыми переключают подстроечные резисторы R2-R16, входящие в состав частото-задающей цепи мультивибратора.

Рисунок 1. Принципиальная схема передатчика.

С выхода мультивибратора импульсы заданной частоты поступают на вход транзисторного ключа на VT1 и VT2, на выходе которого включен ИК-светодиод АЛ 147А. Питается пульт от гальванической батареи напряжение 9V (типа "Кроны").

Резистор R1 служит для установки мультивибратора в состояние логического нуля на выходе, когда ни одна из кнопок управления не нажата. Это приводит к закрыванию ключа на VT1 и VT2 и снижению энергопотребления в паузах между подачами команд, практически, до нуля. Поэтому нет нужды в выключателе питания пульта.

Принципиальная схема приемного устройства показана на рисунке 2. Инфракрасные сигналы, посылаемые пультом, воспринимаются интегральным фотоприемником А1 и преобразуются им в импульсы логического уровня. Эти импульсы поступают на вход элемента D1.3, выполняющего функции ключевого устройства. D2 - измерительный счетчик, при помощи которого происходит подсчет входных импульсов за интервал времени. На счетчике D3 выполнено устройство управления. В исходном состоянии оба счетчика обнулены, поэтому на выходе D3 логический нуль. Он поступает на выв. 13 D1.3 и открывает его. Через элемент проходят импульсы, поступающие от фотоприемника А1, на счетный вход счетчика D2. Одновременно, импульсы образцовой частоты с выхода мультивибратора на элементах D1.1 и D1.2 поступают на С-вход D3. Вместе они выполняют роль таймера. Как только D3 досчитает до 32-х на его выходе появляется логическая единица, что завершает подсчет импульсов. D1.3 закрывается, и в тоже время, происходит запись кода на выходах счетчика D2 в регистр D4. Далее, с поступлением очередного положительного перепада на выходе D1.1, происходит обнуление обоих счетчиков и весь процесс начинается снова.

Среди устройств, предназначенных для дистанционного управления и контроля, устройства, использующие инфракрасное (ИК) излучение, занимают давнее и почетное место.

Например, первые пульты дистанционного управления на инфракрасных лучах появились в 1974 году благодаря фирмам Grundig и Magnavox, которые выпустили первый телевизор, оснащенный таким управлением. Датчики, использующие ИК-излучение, широко используются в автоматике.

Основным преимуществом устройств управления на ИК-лучах является их низкая чувствительность к электромагнитным помехам, а также то, что эти устройства сами не создают помех другим электронным устройствам. Как правило, ИК дистанционное управление ограничивается жилым или производственным помещением, а излучатель и приемник ИК излучения должны находиться в прямой видимости и быть направленными друг на друга.

Эти свойства определяют основную сферу применения рассматриваемых устройств – дистанционные управление бытовыми приборами и устройствами автоматики на небольших расстояниях, а также там, где требуется бесконтактное обнаружение пересечения линии прямолинейного распространения излучения.

Даже на заре своего возникновения устройства на ИК лучах были весьма просты в разработке и применении, в настоящее же время при использовании современной электронной базы такие устройства стали еще проще и надежнее. Как нетрудно заметить, даже мобильные телефоны и смартфоны оснащаются ИК-портом для связи и управления бытовой техникой по ИК-каналу, несмотря на широкое применение беспроводных технологий, таких как Bluetooth и Wi-Fi.

Компания Мастер Кит предлагает несколько модулей, работающих с использованием ИК-излучения, предназначенных для применения в проектах DIY.

Рассмотрим три устройства разной степени сложности и назначения. Для удобства основные характеристики всех устройств сведены в таблицу, расположенную в конце обзора.

  1. Инфракрасный барьер предназначен для применения в качестве датчика охранных систем, при спортивных соревнованиях в качестве фотофиниша, а также для дистанционного управления устройствами автоматики на расстоянии до 50 метров.

Устройство состоит из двух модулей – передатчика и приемника. Передатчик собран на сдвоенном интегральном таймере NE556 и формирует прямоугольные импульсы с заполнением частотой 36 кГц. Таймер имеет достаточно мощный токовый выход для того, чтобы непосредственно управлять подключенными к нему инфракрасными светодиодами.

Одиночным аналогом NE556 является знаменитый интегральный таймер NE555, который вот уже много десятков лет верой и правдой служит целой армии радиолюбителей для разработки электронных устройств. Изучить таймер на примерах 20 электронных схем, разработанных на основе этого таймера, можно с помощью набора-конструктора «Классика схемотехники» их серии Азбука электронщика. При сборке схем даже не потребуется паяльник; все они собираются на беспаечной макетной плате.

Излученный сигнал принимается приемником, основой которого является специализированная микросхема, детектируется пиковым детектором и поступает на усилитель тока на транзисторе, к которому подключено реле, позволяющее коммутировать ток до 10А.

Инфракрасный барьер, несмотря на простоту, является достаточно чувствительным устройством, и позволяет работать как на «просвет», так и на «отражение» и требует изготовления бленд для передатчика и приемника, устраняющих влияние переотраженных сигналов.

Пример применения инфракрасного барьера совместно с набором «Цифровая лаборатория» из уже упомянутой серии Азбука электронщика можно посмотреть .

  1. – это выключатель освещения с управлением от любого пульта дистанционного управления на инфракрасных лучах.

Модуль позволяет управлять освещением или другими электроприборами, используя любую кнопку пульта ДУ.

Как правило, на каждом пульте ДУ есть редко используемые или вовсе не используемые кнопки. Применив этот выключатель, вы сможете включать и выключать люстру, вентилятор и т.п. с того же пульта ДУ, с которого вы управляете телевизором или музыкальным центром.

При подаче питания модуль в течение 10 секунд «ждет» получения сигнала, соответствующего выбранной кнопке пульта, и по истечению этого времени «запоминает» нажатую кнопку. После этого для срабатывания реле модуля достаточно один раз нажать эту кнопку, при повторном нажатии реле выключится. Таким образом, реализуется режим управления типа «триггер». Модуль остается запрограммированным даже при отключении его питания.

Следует отметить, что модуль «помнит» свое последнее состояние при отключении питания.

В устройстве предусмотрен режим автоматического отключения нагрузки примерно через 12 часов после ее включения на случай, если нагрузку забыли выключить.

Реле модуля может коммутировать мощность до 1500 Вт.

  1. Комплект беспроводного управления по ИК-каналу имеет собственный пульт ДУ с 4-мя кнопками и 4 канала управления по 2000 Вт каждый.

Каждый из 4-х каналов дистанционного управления работает в режиме «кнопка», т.е. реле канала замкнуто, пока нажата соответствующая кнопка на пульте ДУ.

С помощью модуля можно организовать реверсивное управление двумя коллекторными электродвигателями, поскольку каждое реле имеет один нормально замкнутый (NC) и один нормально разомкнутый (NO) контакты с общим проводом.

Для удобства использования каждый канал оснащен светодиодом, индицирующим включение реле.

Пульт комплекта питается от элемента CR2032.

Управление нагрузкой с большей мощностью для всех рассмотренных устройств можно осуществить с помощью модулей расширения:

До 4000 Вт: подойдет модуль расширения ;

До 8000 Вт: подойдет модуль расширения .

Модули с инфракрасным управлением

Артикул

Название

Напряжение питания

Число каналов управления

Максимальная мощность нагрузки одного канала, Вт

Примеры применения

Инфракрасный барьер

12В постоянный

Охранные устройства; спортивные соревнования; робототехника; устройства автоматики

Выключатель освещения

12В постоянный;

220В переменный

Управление освещением, вентиляцией, отоплением

Комплект беспроводного управления

12В постоянный

Реверсивное управление коллекторными двигателями; 4-х канальное управление бытовыми приборами

Пульт ДУ (ПДУ, пульт дистанционного управления, RCU, remote control unit) -- электронное устройство для удалённого (дистанционного) управления другим электронным устройством на расстоянии. Существуют как в автономном, так и в (гораздо реже) неавтономном (проводном) вариантах. Конструктивно -- обычно небольшая коробка, содержащая в себе электронную схему, кнопки управления и источник автономного питания.

ПДУ применяются для управления системами и механизмами на мобильных объектах (самолёты, космические корабли, суда и т. д.), управления производственными процессами, системами связи, военными объектами. Также широко используются для дистанционного управления телевизорами, музыкальными центрами, аудио- и видеопроигрывателями, другой бытовой электронной аппаратурой (посылка команд переключения телеканалов, звуковых дорожек, управления громкостью и т. п.). Бытовой ПДУ представляет собой небольшое устройство с кнопками, питающееся от батареек и посылающее команды посредством инфракрасного излучения. Большинство образцов современной бытовой электроники содержат ограниченный набор средств управления на своем корпусе и полный набор на пульте ДУ.

Своеобразные пульты ДУ бывают у автомобильных сигнализаций и некоторых цифровых фотоаппаратов. Бывают также пульты ДУ для управления роботами, авиамоделями и др.(Рисунок 1.2).

Рисунок 1.2 - Различные пульты для бытовых приборов

1.2.1 История дистанционного управления

Один из самых ранних образцов устройств для дистанционного управления придумал и запатентовал Никола Тесла в 1893 году.

В 1903 году испанский инженер и математик Leonardo Torres Quevedo представил в Парижской академии наук Telekino -- устройство, представлявшее собой робота, выполняющего команды, переданные посредством электромагнитных волн. В том же году он получил патенты во Франции, Испании, Великобритании и США. В 1906 году в порту Бильбао в присутствии короля и большого сборища зрителей Torres представил своё изобретение, управляя лодкой с корабля. Позже он пробовал приспособить Telekino для снарядов и торпед, но прекратил проект из-за недостатка средств.

Первая дистанционно управляемая модель аэроплана была запущена в 1932 году. Затем над использованием дистанционного управления в военных целях усиленно работали во время Второй мировой войне, например в проекте немецкой ракеты земля-воздух Вассерфаль.

Первый пульт ДУ для управления телевизором был разработан американской компанией Zenith Radio Corporation в начала 1950-х. Он был соединён с телевизором кабелем. В 1955 году был разработан беспроводной пульт Flashmatic, основанный на посылании луча света в направлении фотоэлемента. К сожалению, фотоэлемент не мог отличить свет из пульта от света из других источников. Кроме того, требовалось направлять пульт точно на приёмник.

В 1956 году американец австрийского происхождения Роберт Адлер разработал беспроводной пульт Zenith Space Commander. Он был механическим и использовал ультразвук для задания канала и громкости. Когда пользователь нажимал кнопку, она щёлкала и ударяла пластину. Каждая пластина извлекала шум разной частоты и схемы телевизора распознавали этот шум. Изобретение транзистора сделало возможным производство дешёвых электрических пультов, которые содержат пьезоэлектрический кристалл, питающийся электрическим током и колеблющийся с частотой, превышающей верхний предел слуха человека (хотя слышимой собаками). Приёмник содержал микрофон, подсоединённый к схеме, настроенной на ту же частоту. Некоторыми проблемами этого способа были возможность приёмника сработать от естественного шума и то, что некоторые люди, особенно молодые женщины, могли слышать пронзительные ультразвуковые сигналы. Был даже случай, когда игрушечный ксилофон мог переключать каналы на телевизорах этого типа, потому что некоторые обертоны ксилофона совпадали по частоте с сигналами пульта.

В 1974 г. фирмы GRUNDIG и MAGNAVOX выпустили первый цветной телевизор с микропроцессором управления на ИК-лучах. Телевизор имел экранную индикацию (OSD) -- в углу экрана отображался номера канала.

Толчок к появлению более сложных типов пультов ДУ появился в конце 1970-х, когда компанией Би-би-си был разработан телетекст. Большинство продаваемых пультов ДУ в то время имели ограниченный набор функций, иногда только четыре: следующий канал, предыдущий канал, увеличить или уменьшить громкость. Эти пульты не отвечали нуждам телетекста, где страницы были пронумерованы трёхзначными числами. Пульт, позволяющий выбирать страницу телетекста, должен был иметь кнопки для цифр от 0 до 9, другие управляющие кнопки, например для переключения между текстом и изображением, а также обычные телевизионные кнопки для громкости, каналов, яркости, цветности. Первые телевизоры с телетекстом имели проводные пульты для выбора страниц телетекста, но рост использования телетекста показал необходимость в беспроводных устройствах. И инженеры Би-Би-Си начали переговоры с производителями телевизоров, что привело в 1977--1978 к появлению опытных образцов, имевших гораздо больший набор функций. Одной из компаний была ITT, её именем был позже назван протокол инфракрасной связи.

В 1980-х Стивен Возняк из компании Apple основал компанию CL9. Целью компании было создание пульта ДУ, который мог бы управлять несколькими электронными устройствами. Осенью 1987 года был был представлен модуль CORE. Его преимуществом была возможность «обучаться» сигналам от разных устройств. Он также имел возможность выполнять определённые функции в назначенное время благодаря встроенным часам. Так же это был первый пульт, который мог быть подключён к компьютеру и загружен обновлённым программным кодом. CORE не оказал большого влияния на рынок. Для среднего пользователя было слишком сложно программировать его, но он получил восторженные отзывы от людей, которые смогли разобраться с его программированием. Названные препятствия привели к роспуску CL9, но один из её работников продолжил дело под маркой Celadon.

К началу 2000-х количество бытовых электроприборов резко возросло. Для управления домашним кинотеатром может потребоваться пять--шесть пультов: от спутникового приёмника, видео-магнитофона, DVD-проигрывателя, телевизионного и звукового усилителя. Некоторые из них требуется использовать друг за другом, и, из-за разобщённости систем управления, это становится обременительным. Многие специалисты, включая известного специалиста и изобретателя современного пульта ДУ Роберта Адлера, отмечают сколь запутанно и неуклюже использование нескольких пультов.

Появление КПК с инфракрасным портом позволило создавать универсальные пульты ДУ с программируемым управлением. Однако в силу высокой стоимости этот метод не стал слишком распространён. Не стали широко распространёнными и специальные универсальные обучаемые пульты управления в силу относительной сложности программирования и использования. Так же возможно использование некоторых мобильных телефонов для дистанционного управления (по какналу Bluetooth) персональным компьютером.

ПДУ видеомагнитофона, телевизора, музыкального центра или спутникового ресивера возможно применить для выключения и включения различных бытовых электроприборов, в том числе и освещение.

В этом нам поможет дистанционное управления своими руками, схема которого приведенная в данной статье.

Описание работы системы дистанционного управления на ИК лучах

Для дистанционного управления приборами применяется следующий механизм. На ПДУ нажимают и держат произвольную кнопку в течении 1 секунды. На непродолжительное нажатие (например во время управления музыкальным центром) система не откликается.

Для того, чтобы исключить отклик телевизора на управление приборами, необходимо выбирать не применяемые кнопки на ПДУ или применить пульт от выключенного в это время прибора.

Принципиальная схема дистанционного управления изображена на рисунке 1. Специальная микросхема DA1 усиливает и формирует электросигнал фотодиода BL1 в электроимпульсы. На радиоэлементах DD1.1 и DD1.2 построен компаратор, а на радиоэлементах DD1.3, DD1.4 — генератор импульсов.

Состояние системы управления (включена или выключена нагрузка) контролирует триггер DD2.1. В случае если на прямом выходе данного триггера лог 1, генератор будет функционировать на частоте примерно 1 кГц. На эмиттерах транзисторов VT1 и VT2 появятся импульсы, которые сквозь емкость С10 поступят на контролирующий вывод симистора VS1. Он будет отпираться в начале каждого полупериода сетевого напряжения.

В первоначальном положении на контакте 7 микросхемы DA1 находится лог 1, емкость С5 заряжена сквозь сопротивления R1, R2 и на входе С триггера DD2.1 лог 0. Если на фотодиод BL1 идут сигналы ИК излучения с пульта дистанционного управления, на контакте 7 микросхемы DA1 окажутся сигналы, и емкость С5 будет разряжаться сквозь диод VD1 и сопротивление R2.

Когда потенциал на С5 снизится до нижнего уровня компаратора (через 1 секунду или более), компаратор переключится и на ввод триггера DD2.1 поступит сигнал. Состояние триггера DD2.1 поменяется. Так совершается переключение приборов из одного состояния в другое.

Микросхемы DD1 и DD2 возможно использовать схожие из серий К564, К176. VD2 — стабилитрон на напряжение 8-9 вольт и ток более 35 мА. Диоды VD3 и VD4 — КД102Б или схожие. Оксидные емкости — К50-35; С2, С4, С6, С7 — К10-17; С9, С10 — К73-16 или К73-17.

Настройка системы дистанционного управления ик лучах

Заключается в подборе сопротивления R2 такой величины, чтобы переключение совершалось через 1…2 с. Если повышения величины данного сопротивления приведет к тому, что емкость С5 не будет разряжаться до порогового напряжения, необходимо увеличить в 2 раза емкость С5 и повторно произвести регулировку.

Емкость С6 следует ставить в том случае, если продолжительность фронта импульса, идущего с компаратора на триггер, будет чрезмерно большой и он будет переключаться нестабильно.

Если применяемый ПДУ не дозволяет управлять прибором без помех телевизору, возможно собрать самодельный пульт дистанционного управления, который является генератором прямоугольных сигналов с частотой следования 20…40 кГц, функционирующий на излучающий ИК диод. Варианты подобного ПДУ на таймере КР1006ВИ1 (

Всем привет! Здесь мы поговорим о том, как сделать самое простое ИК управление (). Управлять этой схемой можно даже обычным пультом от телевизора. Предупреждаю сразу, дистанция не велика - примерно 15 сантиметров, но даже такой результат обрадует новичка в работе. При самодельном передатчике дальность величивается в два раза, то есть примерно возрастает еще на 15 сантиметров. Делается блок ДУ просто. К 9-ти вольтовой "кроне" подключаем ИК светодиод через резистор в 100-150 ом, при этом ставим обычную кнопку без фиксации, приклеиваем это к батарейке изолентой, при этом изолента не должна препятствовать инфракрасному излучению ИК светодиода.

На фото показаны все те элементы, что нам понадобятся для сборки схемы

1. Фотодиод (можно почти любой)
2. Резистор на 1 ком, и на 300-500 ом (Для наглядности на фото выставил резисторы на 300 и 500 ом)
3. Подстроечный резистор на 47 ком.
4. Транзистор КТ972А или аналогичный по току и структуре.
5. Светодиод использовать можно любой низковольтный.

Принципиальная схема приёмника ИК управления на одном транзисторе:


Приступим к изготовлению фотоприемника. Его схема была взята из одного справочника. Сначала рисуем плату перманентным маркером. Но можно сделать это даже навесным монтажем, но желательно делать на текстолите. Моя плата выглядит так:


Ну теперь, естественно, приступаем к пайке элементов. Паяем транзистор:



Припаиваем резистор в 1 кОм (Килоом) и построечный резистор.


И наконец паяем последний элемент - это резистор на 300 - 500 Ом, я поставил 300 Ом. Разместил его с обратной стороны печатной платы, т.к он мне не позволил припять его с лицевой стороны, из-за своих мутационных лап =)


Все это дело чистим зубной щеткой и спиртом, дабы смыть остатки канифоли. Если всё собрано без ощибок и фотодиод исправный - заработает сразу. Видео работы данной конструкции можно посмотреть ниже:

На видеоролике дистанция маленькая, так как надо было смотреть одновремено и в камеру, и на пульт. Поэтому не смог сфокусировать направления пульта. Если вместо фотодиода поставить фоторезистор, то будет реагировать на свет, проверенно лично, чувствительность даже лучше, чем в оригинальных схемах фоторезистора. На схему подавал 12в, работает нормально - светодиод горит ярко, регулируется яркость и чувствительность фоторезистора. В настоящее время по этой схеме подбираю элементы, чтобы можно было питать ИК приёмник от 220 вольт, и выход на лампочку тоже был 220В. За предоставленную схему отдельное спасибо: thehunteronghosts . Материал предоставил: