Для моделирования устройств, приобрел макетную плату. В комплект поставки дополнительно входила плата стабилизатора напряжения на пять и три с половиной вольта.

Размеры платы и расположение контактных штырьков соответствовали масштабу расположения контактов самой макетной платы. Смотрим фото один.

Схема стабилизатора показана на рисунке один.

Увеличенный вид платы стабилизатора показан на фото 2.

Питание на плату подается через универсальный разъем ХР1 и кнопочный выключатель SA1. Для защиты от переполюсовки подключения в схему введен защитный диод VD1, а для индикации включения напряжения питания — светодиод HL1 с гасящим резистором R1. Конденсаторы С1,С2,С3 и С4 — конденсаторы фильтра. С выключателя SA1 напряжение подается на стабилизатор AMS1117 5,0, выходное напряжение которого равно пяти вольтам. Далее это напряжение подается на разъемы XP2,XP3,XP5, XP6 и второй микросхемный стабилизатор AMS1117 3,3, выходной напряжение которого, равно 3,3 вольта. Напряжение на выходных разъемах ХР4 и ХР7 можно коммутировать с помощью прилагаемых к плате перемычек, смотрим фото 2. При работе с данной платой, вместо этих перемычек можно ввести в исследуемую схему измерители тока. При подключении вольтметров к контактам 1, 5 или 2, 6 разъема ХР2, можно контролировать напряжение питания плюс пять вольт. Напряжение +3,3 вольта можно контролировать, подключив вольтметр к контактам 3, 7 и 4, 8 этого же разъема. Разъем ХР5 является разъемом USB.

Отдельно стабилизаторы серии AMS1117 можно приобрести через интернет, я как всегда заказал их через eBay у наших друзей из Китая. Как видно из скриншота микросхемы дешевые, всего 68 рублей за десять штук. Микросхемы этой серии являются линейными стабилизаторами на фиксированные выходные напряжения — 1,2 В; 1,5 В; 1,8 В; 2,5 В; 2,85 В; 3,3 В и 5,0 вольт. Максимально допустимый ток нагрузки этих стабилизаторов равен одному амперу. Максимальное напряжение вход – выход 1,3 В. Максимальное входное напряжение равно +15 В. Минимальный ток нагрузки 0,01 А. Эти микросхемы способны работать в диапазоне температур от -40 до +125 градусов С. Все микросхемы данной серии имеют защиту от превышения тока нагрузки и защиту от превышения температуры кристалла. Данные стабилизаторы с дополнительными элементами способны работать и в схемах регулируемых блоках питания. Схема включения микросхемы AMS1117 1,2 в качестве регулируемого стабилизатора приведена на рисунке 2.

Для данной схемы выходное напряжение рассчитывается по формуле Uвых = Uстаб х (1 + R2/R1). Напряжение Uстаб для микросхемы AMS1117 1,2 равно 1,2 вольта. Минимальное напряжение такого стабилизатора снизу ограничено Uстаб, а сверху оно равно 15 В – 1,3 В = 13,7 В. Где 15 В, это максимальное входное напряжение, а 1,3 вольта – разница напряжений вход – выход стабилизатора. Все схемы с использованием данных микросхем должны иметь выходной танталовый конденсатор величиной 10 мкф. Это снижает нестабильность по току на высоких частотах. Возможно применение и оксидных электролитических конденсаторов величиной 50 мкф и более, желательно использовать высококачественный конденсатор с эквивалентным последовательным сопротивлением 0,5 Ом.
Используемая литература: «Микросхемы для линейных источников питания и их применение» Додэка 1998г.

Кажется, что с надежными 5-вольтовыми логическими схемами медлен­но, но настойчиво, начинают конкурировать схемы, созданные для ра­боты с номинальным напряжением источника питания 3.3 В. Доказано, что работа с более низким уровнем напряжения может повысить ско­рость, плотность компоновки элементов и к.п.д. Хотя не ясно, как мно­го 5-вольтовых логических схем будет сохранено в тех случаях, когда не требуются оптимальные эксплуатационные параметры, очевидно, что вычислительные системы ближайшего будущего будут содержать, по крайней мере, часть логических схем, работающих с напряжением пита­нияЗ,3 В. При этом перед разработчиками источников питания встает интересная задача - как преобразовать напряжение уже имеющегося встроенного 5-вольтового источник до величины 3,3 В.

Естественной реакцией, вероятно, было бы применение для этой цели ИИП. Однако расчет и опыт имеющихся ИИП показывает, что при работе с 5-ю вольтами на входе и токе в нагрузке около 5 А, нельзя ожидать к.п.д. много выше 70 %. Трудность состоит в том, что падения напряжения, связанные с работой коммутатора, фиксирующего диода и выпрямительными диодами составляют слишком большую долю от 5 В. Задача усложняется относительно большими значениями тока. Таким образом, когда учитываются дополнительные факторы, такие как элект­рические помехи и сложности схемы, становится естественным вернуть­ся к возможности использования линейного стабилизатора. Интересно, что к.п.д. линейного стабилизатора, используемого для преобразования от 5,0 В к 3,3 В и обозначаемого просто 5,0/3,3, доходит до 66 %. Видно, что если выбрать импульсный стабилизатор вместо линейного, можно в лучшем случае получить незначительное повышение к.п.д.

Дальнейшее рассмотрение показывает, что подойдет не любая схема линейного стабилизатора. Правильнее воспользоваться специальной раз­работкой, чтобы получить необходимое низкое падение напряжения при наихудших условиях, связанных с разбросом параметров схемы и темпе­ратурой. Линейный регулируемый стабилизатор 171083 фирмы Linear Technology с низким падением напряжения удовлетворяет требованиям преобразования напряжения от 5 В до 3,3 В. Приятной особенностью этой специализированной ИС является отсутствие нежелательного пове­дения при форсированных режимах работы (например, чрезмерная на­грузка) в пределах допустимого падения напряжения на ней. У некото­рых линейных стабилизаторов при таких обстоятельствах возникает колебательный переходной процесс или резкое повышение тока. Как по­казано на рис. 20.4, применение ИС L71083 для преобразования напря­жения от 5,0 В до 3,3 В оказывается очень простым. Источник, исполь­зующий эту ИС, может обеспечить в нагрузке ток 7.5 А, имеет защиту от коротких замыканий и чрезмерного повышения температуры.

Рис. 20.4. Использование специализированной ИС линейного стаби­лизатора для преобразования от 5 В до 3,3 В. Требование низкого падения напряжения препятствует использованию других ИС стаби­лизаторов. Llinear Technology Соф.

Метеостанции на .

Подумав, я пришел к выводу, что самой дорогой и объёмной частью метеостанции является плата Arduino Uno. Самым дешевым вариантом замены может стать плата Arduino Pro Mini. Плата Arduino Pro Mini производится в четырех вариантах. Для решения моей задачи подходит вариант с микроконтроллером Mega328P и напряжением питания 5 вольт. Но есть еще вариант на напряжение 3,3 вольта. Чем эти варианты отличаются? Давайте разберемся. Дело в том, что на платах Arduino Pro Mini устанавливается экономичный стабилизатор напряжения. Например такой, как MIC5205 c выходным напряжением 5 вольт. Эти 5 вольт подаются на вывод Vcc платы Arduino Pro Mini, поэтому и плата будет называться «плата Arduino Pro Mini с напряжением питания 5 вольт». А если вместо микросхемы MIC5205 будет поставлена другая микросхема с выходным напряжением 3,3 вольта, то плата будет называться «плата Arduino Pro Mini с напряжением питания 3,3 вольт»

Плата Arduino Pro Mini может получать энергию от внешнего нестабилизированного блока питания с напряжением до 12 вольт. Это питание должно подаваться на вывод RAW платы Arduino Pro Mini. Но, ознакомившись с даташитом (техническим документом) на микросхему MIC5205, я увидел, что диапазон питания, подаваемого на плату Arduino Pro Mini, может быть шире. Если, конечно, на плате стоит именно микросхема MIC5205.

Даташит на микросхема MIC5205:


Входное напряжение, подаваемое на микросхему MIC5205, может быть от 2,5 вольт до 16 вольт. При этом на выходе схемы стандартного включения должно быть напряжение около 5 вольт без заявленной точности в 1%. Если воспользоваться сведениями из даташита: VIN = VOUT + 1V to 16V (Vвходное = Vвыходное + 1V to 16V) и приняв Vвыходное за 5 вольт, мы получим то, что напряжение питания платы Arduino Pro Mini, подаваемое на вывод RAW, может быть от 6 вольт до 16 вольт при точности в 1%.

Даташит на микросхему MIC5205:
Для питания платы GY-BMP280-3.3 для измерения барометрического давления и температуры я хочу применить модуль с микросхемой AMS1117-3.3. Микросхема AMS1117 - это линейный стабилизатор напряжения с малым падением напряжения.
Фото модуль с микросхемой AMS1117-3.3:




Даташиты на микросхему AMS1117:
Схема модуля с микросхемой AMS1117-3.3:


Я указал на схеме модуля с микросхемой AMS1117-3.3 входное напряжение от 6,5 вольт до 12 вольт, основывая это документацией на микросхему AMS1117.


Продавец указывает входное напряжение от 4,5 вольт до 7 вольт. Самое интересное, что другой продавец на Aliexpress.com указывает другой диапазон напряжений - от 4,2 вольт до 10 вольт.


В чем же дело? Я думаю, что производители впаивают во входные цепи конденсаторы с максимально допустимым напряжением меньшим, чем позволяют параметры микросхемы - 7 вольт, 10 вольт. И, может быть, даже ставят бракованные микросхемы с ограниченным диапазоном питающих напряжений. Что произойдет, если на купленную мной плату с микросхемой AMS1117-3.3, подать напряжение 12 вольт, я не знаю.
Возможно для повышения надежности китайской платы с микросхемой AMS1117-3.3 надо будет поменять керамические конденсаторы на электролитические танталовые конденсаторы. Такую схему включения рекомендует производитель микросхем AMS1117А минский завод УП "Завод ТРАНЗИСТОР".

Ниже приведены сразу две схемы 3-х Вольтовых блоков питания .
Они собраны на разных элементах, а конкретную вы сможете выбрать сами, познакомившись с их особенностями и исходя из своих потребностей м возможностей.
На первом рисунке приведена простая схема блока питания на 3 В (ток в нагрузкеке 200 мА) с электронной защитой от перегрузки (Iз = 250 мА). Уровень пульсации выходного напряжения не превышает 8 мВ.

Для нормальной работы стабилизатора напряжение после выпрямителя (на диодах VD1...VD4) может быть от 4,5 до 10 В, но лучше, если оно будет 5...6 В, ≈ меньшая мощность источника теряется на тепловыделение транзистором VT1 при работе стабилизатора. В схеме в качестве источника опорного напряжения используется светодиод HL1 и диоды VD5, VD6. Светодиод является одновременно и индикатором работы блока питания.

Транзистор VT1 крепится на теплорассеивающей пластине. Как рассчитать размер теплоотводящего радиатора можно более подробно посмотреть .
Трансформатор Т1 можно приобрести из унифицированной серии ТН любой, но лучше использовать самые малогабаритные ТИ1-127/220-50 или ТН2-127/220-50. Подойдут также и многие другие типы трансформаторов со вторичной обмоткой на 5...6 В. Конденсаторы С1...СЗ типа К50-35.

Вторая схема использует интегральный стабилизатор DA1, но в отличие от транзисторного стабилизатора, приведенного на первом рисунке, для нормальной работы микросхемы необходимо, чтобы входное напряжение превышало выходное не менее чем на 3,5 В. Это снижает КПД стабилизатора за счет тепловыделения на микросхеме.

При низком выходном напряжении мощность, теряемая в блоке питания, будет превышать отдаваемую в нагрузку. Необходимое выходное напряжение устанавливается подстроечным резистором R2. Микросхема устанавливается на радиатор. Интегральный стабилизатор обеспечивает меньший уровень пульсации выходного напряжения (1 мВ), а также позволяет использовать емкости меньшего номинала.

В настоящее время множество домашних устройств требуют подключения напряжения стабильной величины на 3 вольта, и нагрузочный ток 0,5 ампер. К ним могут относиться:

  • Плееры.
  • Фотоаппараты.
  • Телефоны.
  • Видеорегистраторы.
  • Навигаторы.

Эти устройства объединены видом источника питания в виде аккумулятора или батареек на 3 вольта.

Как создать питание от бытовой сети дома, не тратя деньги на аккумуляторы или батарейки? Для этих целей не нужно проектировать многоэлементный блок питания, так как в продаже имеются специальные микросхемы в виде стабилизаторов на низкие напряжения.

Схема стабилизатора на 3 вольта

Изображенная схема выполнена в виде регулируемого стабилизатора, и дает возможность создания напряжения на выходе от 1 до 30В. Следовательно, можно применять этот прибор для питания различных устройств для питания 1,5 В, а также для подключения устройств на 3 вольта. В нашем случае устройство применяется для плеера, напряжение на выходе настроено на 3 В.

Работа схемы

С помощью изменяемого сопротивления устанавливается необходимое напряжение на выходе, которое рассчитывается по формуле: U вых=1.25*(1 + R2 / R1). Вместо регулятора напряжение применяется микросхема SD1083 / 1084. Без изменений применяются отечественные подобные микросхемы 22А / 142КРЕН 22, которые различаются током выхода, что является незначительным фактором.

Для нормального режима микросхемы необходимо смонтировать для нее маленький радиатор. В противном случае при малом напряжении выхода регулятор функционирует в токовом режиме, и значительно нагревается даже без нагрузки.

Монтаж стабилизатора

Прибор собирается на монтажной плате с габаритами 20 на 40 мм. Схема довольно простая. Есть возможность собрать стабилизатор без использования платы, путем навесного монтажа.

Выполненная готовая плата может разместиться в отдельной коробочке, либо прямо в корпусе самого блока. Необходимо в первую очередь настроить рабочее напряжение стабилизатора на его выходе, с помощью регулятора в виде резистора, а потом подсоединять нагрузку потребителя.

Переключаемый стабилизатор на микросхеме

Такая схема является наиболее легкой и простой. Ее можно смонтировать самостоятельно на обычной микросхеме LZ. С помощью отключения и включения сопротивления в цепи обратной связи образуется два различных напряжения на выходе. в этом случае нагрузочный ток может возрасти до 100 миллиампер.

Нельзя забывать про цоколевку микросхемы, так как она имеет отличие от обычных стабилизаторов.

Стабилизатор на микросхеме AMS 1117

Это элементарный стабилизатор с множественными фиксированными положениями регулировки напряжения 1,5-5 В, током до 1 ампера. Его можно монтировать самостоятельно на сериях — X.X (CX 1117 — X.X) (где XX - напряжение на выходе).

Есть образцы микросхем на 1,5 – 5 В, с регулируемым выходом. Они применялись раньше на старых компьютерах. Их преимуществом является малое падение напряжения и небольшие габариты. Для выполнения монтажа необходимы две емкости. Чтобы хорошо отводилось тепло, устанавливают радиатор возле выхода.